AIDA will develop a Big Data Analysis and Analytics framework equipped with a complete set of effective, efficient and automated data mining and analytics solutions to deal with standardised investigative workflows, extensive content acquisition, information extraction and fusion, knowledge management and enrichment through novel applications of Big Data processing, Machine Learning, AI and predictive and visual analytics. It will do so in a way that ensures societal benefits and consequences are integral part of design and deployment efforts.

Project website:
Twitter: @_AIDAProject_
Linkedin: AIDA Project

ANITA's primary goal is twofold: a) To boost the LEA's investigation process and to significantly increase their operational capabilities, by introducing a set of innovative tools for efficiently addressing online illegal trafficking challenges (namely online data source analysis, blockchain analysis, Big Data analytics, knowledge modelling, incorporation of human cognitive function in the analysis pipelines, user-oriented intelligence applications), and b) To significantly facilitate the novice officers training process and to optimize the learning curve (by collecting, integrating and re-using knowledge from multiple expert officers and through the development of a recommendation functionality to transfer the acquired 'know-how' to the new officers).

Project website:
Twitter: @AnitaProject

AP4AI (Accountability Principles for Artificial Intelligence) aims to create a global Framework for AI Accountability for Policing, Security and Justice on determing how to capitalise on the opportunities offered by Artificial Intelligence (AI) and Machine Learning to improve the way investigators, prosecutors, judges or border guards carry out their mission of keeping citizens safe and rendering justice while, at the same time, safeguarding and demonstrating true accountability of AI use towards society.

Project website:

APPRAISE will build on the latest advances in big data analysis, artificial intelligence, and advanced visualisation by creating a robust security framework that will improve both the cyber and physical security and safety of public spaces. The project will develop and validate a state-of-the-art framework for soft target protection with a particular focus on active, audited, and well-defined information and intelligence exchange among private and public sector security practitioners to enable an effective collaboration, at the information and the operational levels.

Project website:
Twitter: @appraise_h2020
Linkedin: APPRAISE Project

CREST aims to equip LEAs with an advanced prediction, prevention, operation, and investigation platform by leveraging the IoT ecosystem, autonomous systems, and targeted technologies and building upon the concept of multidimensional integration and correlation of heterogeneous multimodal data streams (ranging from online content to IoT-enabled sensors) for a) threat detection and assessment, b) dynamic mission planning and adaptive navigation for improved surveillance based on autonomous systems, c) distributed command and control of law enforcement missions, d) sharing of information and exchange of digital evidence based on blockchain, and e) delivery of pertinent information to different stakeholders in an interactive manner tailored to their needs.

Project website:
Twitter: @CrestProject
Linkedin: CREST Project

INFINITY's ambition is to become a flagship project against society’s most pressing cybercriminal, terrorist and hybrid threats. Synthesising the latest innovations in virtual and augmented reality, artificial intelligence and machine learning with big data and visual analytics, INFINITY will deliver an integrated solution that aims to revolutionise data driven investigations. Bringing together a strong representation from national and supranational agencies with an end user-driven design, it will directly address the core needs of contemporary law enforcement.

Project website:
Twitter: @infinity_h2020
Linkedin: INFINITY

LETSCROWD will overcome challenges preventing the effective implementation of the European Security Model with regards to mass gatherings. This will be achieved by providing to security policy practitioners (LEAs) with a dynamic risk assessment methodology for the protection of crowds during mass gatherings centred on human factors, a policy making toolkit for the long-term and strategic decision making of security policy makers, including a database of empirical data, statistics and an analytical tool for security policies modelling, and a set of human centred tools for LEAs, including real time crowd behaviour forecasting, innovative communication procedures, semantic intelligence applied to social networks and the internet, and novel computer vision techniques.

Project website:
Twitter: @LetsCrowd
Linkedin: Lets Crowd project

MAGNETO will revolutionize the capacity of Law Enforcement Agencies (LEAs) to deal with extreme volumes and diversity of data in order to accomplish highly-efficient crime prevention and investigation. The technologies and solutions developed by MAGNETO will permit LEAs to consistently process massive heterogeneous data in a more efficient manner, effectively enabling their transformation into solid and court-proof evidence.

Project website:
Twitter: @H2020Magneto
LinkedIn: MAGNETO H2020

PREVISION partners will take advantage of their capabilities, expertise and previously delivered research, together with already defined and emerging standards and best practices in Europe, so as to focus their resources and attention to the new elements and novel aspects of the project. The overall strategy in the execution of the PREVISION project is based on an iterative development methodology, which involves frequent software releases being made available to the LEA and practitioners end-users for testing and evaluation, resulting in keeping them continuously in the production loop. The PREVISION Platform will be deployed in 10 different demonstrations, managed by the different LEAs and practitioners of the consortium.

Project website:
Twitter: @HORIZON2020Prevision
Linkedin: PREVISION H2020
Youtube: PREVISION H2020

PROPHETS (Preventing Radicalisation Online through the Proliferation of Harmonised Toolkits) aims to counter online radicalisation, cybercrime, and cyberterrorism at their origins. Behavioural radicalisation can be seen as a driving force behind online criminal activities. PROPHETS seeks to identify, examine, and understand the various behavioural processes underlying such behaviour in order to recognize and comprehend the individual reasoning behind choosing to engage in such activities. Through the findings of this project, PROPHETS is developing new methods to detect, analyse, investigate, and fight the ever-emerging threats of online radicalisation, cybercrime, and cyberterrorism by addressing the very factors causing them.

Project website:
Twitter: @H2020Prophets
LinkedIn: Prophets Project

PROTON is an innovative approach for a better understanding of the recruitment mechanisms in criminal and terrorist organisations. By combining social analyses with technological and computational sciences, the project aims at improving current prevention policies, as well as providing guidelines for policy makers and disparate end-users on a local, national and international scale. The ultimate goal is to tackle organised crime, terrorism and cybercrime through a reduction of their growth opportunities.

Project website:
LinkedIn: PROTON Project
Youtube: PROTON Project

The vision of RED-Alert project is to develop a real-time system able to facilitate the timely identification of terrorism related content by summarizing data from social media. To fight the war against terror, LEAs are increasingly relying on social media intelligence, a new field of intelligence covering a wide range of applications, techniques and capabilities analyzing social media data. Addressing the needs and challenges, RED-Alert solution will cover a wide range of social media channels, in particular new channels such as Telegram and Periscope, which are increasingly used by terrorist groups to disseminate their content. The RED-Alert solution will allow LEAs to take coordinated action in real-time while preserving the privacy of citizens.

Project website:
Twitter: @REDAlertProject
Linkedin: RED-Alert Project

ROBORDER aims at developing and demonstrating a fully-functional autonomous border surveillance system with unmanned mobile robots including aerial, water surface, underwater and ground vehicles which will incorporate multimodal sensors as part of an interoperable network. ROBORDER's intention is to implement a heterogenous robot system and enhance it with detection capabilities for early identification of criminal activities at border and coastal areas along with marine pollution events. ROBORDER will collect heterogeneous data from several different resources such as thermal and optical cameras, passive radars and RF sensors originated from multiple vehicles/robots. The data will be semantically integrated in order to provide accurate decision support services to the corresponding authorities for border patrolling.

Project website:
Twitter: @roborder_eu

ROXANNE is an EU funded collaborative research and innovation project, aiming to unmask criminal networks and their members as well as to reveal the true identity of perpetrators by combining the capabilities of speech/language technologies and visual analysis with network analysis. ROXANNE collaborates with Law Enforcement Agencies (LEAs), industry and researchers to develop new tools to speed up investigative processes and support LEA decision-making. The end-product will be an advanced technical platform which uses new tools to uncover and track organized criminal networks, underpinned by a strong legal framework. The project consortium comprises 24 European organisations from 16 countries while 11 of them are LEAs from 10 different countries.

Project website:
Twitter: @ROXANNE_project
Linkedin: ROXANNE Project

SHOTPROS aims to improve the training for European Police officers. The influence of psychological and contextual human factors (HFs) on the behaviour of decision-making and acting (DMA) of police officers under stress and in high-risk operational situations will be investigated. Based on the results, SHOTPROS will develop a HF-rooted training curriculum and a corresponding VR training solution to provide a comprehensive framework for practical training.

Project website:
Twitter: @shotpros
Linkedin: SHOTPROS - H2020 Project

Video material collected and analysed by Law Enforcement Agencies (LEA) has become a critical component in legal investigations following major criminal acts and terrorist attacks. At the same time, the amount of video data available is continuously increasing. In spite of this growth, the whole video investigation work is still mostly carried out manually by the LEA officers. These current practices are too resource intensive to handle the huge and steadily increasing volume of videos that need to be analysed. Consequently, post-event extraction of vital first clues from videos meet unreasonable delays. In view of the needs, VICTORIA aims at creating a real breakthrough regarding functionality and usability of video analysis tools used for legal investigations.

Project website:
Twitter: @H2020Victoria
LinkedIn: VICTORIA Project

This website uses cookies to manage authentication, for analytics, and other functions.